
Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Persistent Data Structures

Robin Visser

IOI Training Camp
University of Cape Town

4 March 2017

1 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Overview

1 Definition

2 Example

3 Suboptimal Solutions
Naive Approach
Offline Approach

4 Fat Nodes

5 Path Copying

6 Optimal Approach
Algorithm
Time Analysis

7 Geometric problem

2 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Definition

What exactly are persistent data structures?

Two words: Time Travel

• It’s data structures which preserve previous versions of
itself. Essentially: data structures with archaeology.

• A general concept which can be applied to any data
structure.

• If you can access previous versions but only modify the
latest version, it’s partially persistent. If you can access
and modify all prior versions, it’s fully persistent.

3 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Definition

What exactly are persistent data structures?

Two words: Time Travel

• It’s data structures which preserve previous versions of
itself. Essentially: data structures with archaeology.

• A general concept which can be applied to any data
structure.

• If you can access previous versions but only modify the
latest version, it’s partially persistent. If you can access
and modify all prior versions, it’s fully persistent.

3 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Definition

What exactly are persistent data structures?

Two words: Time Travel

• It’s data structures which preserve previous versions of
itself. Essentially: data structures with archaeology.

• A general concept which can be applied to any data
structure.

• If you can access previous versions but only modify the
latest version, it’s partially persistent. If you can access
and modify all prior versions, it’s fully persistent.

3 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Definition

What exactly are persistent data structures?

Two words: Time Travel

• It’s data structures which preserve previous versions of
itself. Essentially: data structures with archaeology.

• A general concept which can be applied to any data
structure.

• If you can access previous versions but only modify the
latest version, it’s partially persistent. If you can access
and modify all prior versions, it’s fully persistent.

3 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Definition

What exactly are persistent data structures?

Two words: Time Travel

• It’s data structures which preserve previous versions of
itself. Essentially: data structures with archaeology.

• A general concept which can be applied to any data
structure.

• If you can access previous versions but only modify the
latest version, it’s partially persistent. If you can access
and modify all prior versions, it’s fully persistent.

3 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Example

Let’s say you want to implement a balanced binary search tree
with the following three operations:

• Insert some value x at some time t

• Delete some value x at some time t

• Find if some value x was in the data structure at some
time t.

Furthermore, we want all the above operations to run in
O(log n) time.

4 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Example

Let’s say you want to implement a balanced binary search tree
with the following three operations:

• Insert some value x at some time t

• Delete some value x at some time t

• Find if some value x was in the data structure at some
time t.

Furthermore, we want all the above operations to run in
O(log n) time.

4 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Example

Let’s say you want to implement a balanced binary search tree
with the following three operations:

• Insert some value x at some time t

• Delete some value x at some time t

• Find if some value x was in the data structure at some
time t.

Furthermore, we want all the above operations to run in
O(log n) time.

4 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Naive Approach

An easy brute force solution:

Every time we make some modification to the data structure at
some time t, we can simply copy the entire data structure with
the new modification and label it with the time stamp t.

To query a specific version of the data structure at a particular
time, we then only have to do a single binary search, after
which we can access the data structure at that time.

This requires O(n) extra space and time for each modification,
hence we need a better approach

5 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Naive Approach

An easy brute force solution:

Every time we make some modification to the data structure at
some time t, we can simply copy the entire data structure with
the new modification and label it with the time stamp t.

To query a specific version of the data structure at a particular
time, we then only have to do a single binary search, after
which we can access the data structure at that time.

This requires O(n) extra space and time for each modification,
hence we need a better approach

5 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Naive Approach

An easy brute force solution:

Every time we make some modification to the data structure at
some time t, we can simply copy the entire data structure with
the new modification and label it with the time stamp t.

To query a specific version of the data structure at a particular
time, we then only have to do a single binary search, after
which we can access the data structure at that time.

This requires O(n) extra space and time for each modification,
hence we need a better approach

5 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Offline Approach

• If all queries are given beforehand (i.e. offline algorithm)
we can simply take in all input, sort the queries by time
and then maintain the data structure without persistence
as per normal.

• Then, whenever we get to the version of the data
structure which we need to query we then do the query
operation and obtain some answer.

• Since we have all the queries in increasing time order, we
do not need to keep prior versions of our data structures
(no persistence required).

• Doing this for all queries, then rearranging the answers to
the order they were originally given in, gives us a valid
solution.

6 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Offline Approach

• If all queries are given beforehand (i.e. offline algorithm)
we can simply take in all input, sort the queries by time
and then maintain the data structure without persistence
as per normal.

• Then, whenever we get to the version of the data
structure which we need to query we then do the query
operation and obtain some answer.

• Since we have all the queries in increasing time order, we
do not need to keep prior versions of our data structures
(no persistence required).

• Doing this for all queries, then rearranging the answers to
the order they were originally given in, gives us a valid
solution.

6 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Offline Approach

• If all queries are given beforehand (i.e. offline algorithm)
we can simply take in all input, sort the queries by time
and then maintain the data structure without persistence
as per normal.

• Then, whenever we get to the version of the data
structure which we need to query we then do the query
operation and obtain some answer.

• Since we have all the queries in increasing time order, we
do not need to keep prior versions of our data structures
(no persistence required).

• Doing this for all queries, then rearranging the answers to
the order they were originally given in, gives us a valid
solution.

6 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Offline Approach

• If all queries are given beforehand (i.e. offline algorithm)
we can simply take in all input, sort the queries by time
and then maintain the data structure without persistence
as per normal.

• Then, whenever we get to the version of the data
structure which we need to query we then do the query
operation and obtain some answer.

• Since we have all the queries in increasing time order, we
do not need to keep prior versions of our data structures
(no persistence required).

• Doing this for all queries, then rearranging the answers to
the order they were originally given in, gives us a valid
solution.

6 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Fat Nodes

In general, we’ll have to do operations online, so we can’t rely
on the offline approach. Our first attempt is to consider an
approach known as keeping Fat Nodes:

When updating our data structure, instead of replacing the
value of some node to a new one, we instead keep an array of
values in our node, keeping track of what values were in the
node at what time.

Essentially: We add a modification history to each node.

7 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Fat Nodes

In general, we’ll have to do operations online, so we can’t rely
on the offline approach. Our first attempt is to consider an
approach known as keeping Fat Nodes:

When updating our data structure, instead of replacing the
value of some node to a new one, we instead keep an array of
values in our node, keeping track of what values were in the
node at what time.

Essentially: We add a modification history to each node.

7 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Fat Nodes

In general, we’ll have to do operations online, so we can’t rely
on the offline approach. Our first attempt is to consider an
approach known as keeping Fat Nodes:

When updating our data structure, instead of replacing the
value of some node to a new one, we instead keep an array of
values in our node, keeping track of what values were in the
node at what time.

Essentially: We add a modification history to each node.

7 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Fat Nodes: Time Analysis

Every modification only takes O(1) time and space, just adding
a new value with timestamp to an array within the node. For
full persistence, we would need to keep a version history tree
(instead of just an array) within the node, so modification time
would then be O(logm)

To access nodes, we would need to do a binary search within
each node as we traverse the tree in order to access the right
pointers for some particular time. This gives a multiplicative
slowdown factor of O(logm)

8 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Fat Nodes: Time Analysis

Every modification only takes O(1) time and space, just adding
a new value with timestamp to an array within the node. For
full persistence, we would need to keep a version history tree
(instead of just an array) within the node, so modification time
would then be O(logm)

To access nodes, we would need to do a binary search within
each node as we traverse the tree in order to access the right
pointers for some particular time. This gives a multiplicative
slowdown factor of O(logm)

8 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Path Copying

Another approach is to instead just make a copy of the node
with the new modification. We have to also then make copies
of all ancestors of the node which point to the new node. This
is called path copying

Note that a new root will be copied for each modification
made.

This improves access time to just a single binary search for the
root, after which the data structure can be queried as normal.
(extra additive O(logm) slowdown)

Modification time, however, is O(n) since in the worst case,
the entire data structure will have to be copied.

9 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Path Copying

Another approach is to instead just make a copy of the node
with the new modification. We have to also then make copies
of all ancestors of the node which point to the new node. This
is called path copying

Note that a new root will be copied for each modification
made.

This improves access time to just a single binary search for the
root, after which the data structure can be queried as normal.
(extra additive O(logm) slowdown)

Modification time, however, is O(n) since in the worst case,
the entire data structure will have to be copied.

9 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Path Copying

Another approach is to instead just make a copy of the node
with the new modification. We have to also then make copies
of all ancestors of the node which point to the new node. This
is called path copying

Note that a new root will be copied for each modification
made.

This improves access time to just a single binary search for the
root, after which the data structure can be queried as normal.
(extra additive O(logm) slowdown)

Modification time, however, is O(n) since in the worst case,
the entire data structure will have to be copied.

9 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Path Copying

Another approach is to instead just make a copy of the node
with the new modification. We have to also then make copies
of all ancestors of the node which point to the new node. This
is called path copying

Note that a new root will be copied for each modification
made.

This improves access time to just a single binary search for the
root, after which the data structure can be queried as normal.
(extra additive O(logm) slowdown)

Modification time, however, is O(n) since in the worst case,
the entire data structure will have to be copied.

9 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Combining the two approaches

Noting the two main approaches given: Fat Nodes and Path
Copying, we can combine these two approaches to obtain a
persistent data structure which takes O(1) amortised space and
O(1) amortised time.

Using the idea of fat nodes, instead of making nodes arbitrarily
fat, we just keep one additional space within each node to store
a single modification to that node (with the corresponding time
stamp). This could be a modification to the node’s value,
pointers or whatever property it might have.

We’ll call this space it’s modification box (or mod box).

10 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Combining the two approaches

Noting the two main approaches given: Fat Nodes and Path
Copying, we can combine these two approaches to obtain a
persistent data structure which takes O(1) amortised space and
O(1) amortised time.

Using the idea of fat nodes, instead of making nodes arbitrarily
fat, we just keep one additional space within each node to store
a single modification to that node (with the corresponding time
stamp). This could be a modification to the node’s value,
pointers or whatever property it might have.

We’ll call this space it’s modification box (or mod box).

10 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Combining the two approaches

Noting the two main approaches given: Fat Nodes and Path
Copying, we can combine these two approaches to obtain a
persistent data structure which takes O(1) amortised space and
O(1) amortised time.

Using the idea of fat nodes, instead of making nodes arbitrarily
fat, we just keep one additional space within each node to store
a single modification to that node (with the corresponding time
stamp). This could be a modification to the node’s value,
pointers or whatever property it might have.

We’ll call this space it’s modification box (or mod box).

10 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Combining the two approaches: Algorithm

When we do a modification, we simply check if it’s mod box is
empty. If so, we store the updated value in the mod box with
the appropriate timestamp. If the box is full, we copy the node
and immediately store the new value in this node (keeping the
mod box empty). We then recurse all the necessary
modifications to the parent.

To access a node, we first do a binary search to find the correct
root to start with. We then simply compare the time to the
timestamp in the mod box. If the box is empty or the time is
before the box’s timestamp, then we just consider the original
value of the node. Else, we consider the modified value given in
the mod box.

11 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Combining the two approaches: Algorithm

When we do a modification, we simply check if it’s mod box is
empty. If so, we store the updated value in the mod box with
the appropriate timestamp. If the box is full, we copy the node
and immediately store the new value in this node (keeping the
mod box empty). We then recurse all the necessary
modifications to the parent.

To access a node, we first do a binary search to find the correct
root to start with. We then simply compare the time to the
timestamp in the mod box. If the box is empty or the time is
before the box’s timestamp, then we just consider the original
value of the node. Else, we consider the modified value given in
the mod box.

11 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Combining the two approaches: Time Analysis

To access a node, we just have to do a single O(logm) binary
search to find the correct root, after which it’s just a O(1)
slowdown for each node we visit (must just check the value in
the mod box for each node).

To modify a node, this could potentially take many steps,
perhaps copying O(n) nodes for some particular modification.
However, when a node is copied it creates a new node with an
empty mod box, resulting in the next modification to that node
only being a single write to the mod box (without having to
copy parent nodes). Averaging out the time and space required
for all modifications, we obtain an amortised time and space of
O(1).

12 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Combining the two approaches: Time Analysis

To access a node, we just have to do a single O(logm) binary
search to find the correct root, after which it’s just a O(1)
slowdown for each node we visit (must just check the value in
the mod box for each node).

To modify a node, this could potentially take many steps,
perhaps copying O(n) nodes for some particular modification.
However, when a node is copied it creates a new node with an
empty mod box, resulting in the next modification to that node
only being a single write to the mod box (without having to
copy parent nodes). Averaging out the time and space required
for all modifications, we obtain an amortised time and space of
O(1).

12 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example

We now consider a geometry problem which, at first, doesn’t
seem to have anything in common with persistent data
structures.

Geometry problem

Given a plane with various simple polygons and several query
points, determine for each query point how many polygons the
point lies within.

Note that, in 1 dimension, the problem is equivalent to
determine the number of intervals a point lies within. This can
be solved using interval trees (not to be confused with the
trees used in range-min queries)

13 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example

We now consider a geometry problem which, at first, doesn’t
seem to have anything in common with persistent data
structures.

Geometry problem

Given a plane with various simple polygons and several query
points, determine for each query point how many polygons the
point lies within.

Note that, in 1 dimension, the problem is equivalent to
determine the number of intervals a point lies within. This can
be solved using interval trees (not to be confused with the
trees used in range-min queries)

13 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example

We now consider a geometry problem which, at first, doesn’t
seem to have anything in common with persistent data
structures.

Geometry problem

Given a plane with various simple polygons and several query
points, determine for each query point how many polygons the
point lies within.

Note that, in 1 dimension, the problem is equivalent to
determine the number of intervals a point lies within. This can
be solved using interval trees (not to be confused with the
trees used in range-min queries)

13 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example: Algorithm

We can solve the original 2D problem by considering one of the
spatial dimensions as time.

We break the plane into vertical slices at each vertex or at any
point where lines intersect.

Figure: Example for two polygons, square and triangle

14 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example: Algorithm

We can solve the original 2D problem by considering one of the
spatial dimensions as time.

We break the plane into vertical slices at each vertex or at any
point where lines intersect.

Figure: Example for two polygons, square and triangle

14 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example: Algorithm

We can solve the original 2D problem by considering one of the
spatial dimensions as time.

We break the plane into vertical slices at each vertex or at any
point where lines intersect.

Figure: Example for two polygons, square and triangle

14 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example: Algorithm

Note that within each vertical slice, no lines cross over, hence
each slice is equivalent to the 1-dimensional case of noting how
many intervals overlap with a point (plus a bit of linear
algebra)

Now, given some point, we consider its x-coordinate and do a
binary search to determine the vertical slice it lies in. Once we
have the relevant vertical slice, all that’s left is to determine
the intervals within that slice that overlap with that point,
which can be done in O(log n) time.

Keeping a separate interval tree for each vertical slice takes up
O(n2 log n) time and O(n2) space, hence we need a better
approach.

15 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example: Algorithm

Note that within each vertical slice, no lines cross over, hence
each slice is equivalent to the 1-dimensional case of noting how
many intervals overlap with a point (plus a bit of linear
algebra)

Now, given some point, we consider its x-coordinate and do a
binary search to determine the vertical slice it lies in. Once we
have the relevant vertical slice, all that’s left is to determine
the intervals within that slice that overlap with that point,
which can be done in O(log n) time.

Keeping a separate interval tree for each vertical slice takes up
O(n2 log n) time and O(n2) space, hence we need a better
approach.

15 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example: Algorithm

Note that within each vertical slice, no lines cross over, hence
each slice is equivalent to the 1-dimensional case of noting how
many intervals overlap with a point (plus a bit of linear
algebra)

Now, given some point, we consider its x-coordinate and do a
binary search to determine the vertical slice it lies in. Once we
have the relevant vertical slice, all that’s left is to determine
the intervals within that slice that overlap with that point,
which can be done in O(log n) time.

Keeping a separate interval tree for each vertical slice takes up
O(n2 log n) time and O(n2) space, hence we need a better
approach.

15 / 16



Persistent
Data

Structures

Robin Visser

Definition

Example

Suboptimal
Solutions

Naive Approach

Offline
Approach

Fat Nodes

Path Copying

Optimal
Approach

Algorithm

Time Analysis

Geometric
problem

Geometry example: Algorithm

Instead, we keep a single persistent interval tree, where each
vertical slice in increasing x-coordinate corresponds to
increasing intervals of time. Note that between two adjacent
slices, that can only be one change, hence maintaining a
persistent data structure by starting with an initial interval tree
corresponding to the leftmost vertical slice and doing
modifications as the x-coordinate increase gives us a solution
which runs in O(n log n) preprocessing time, O(n) space and
O(log n) query time.

Therefore, the initial binary search to determine the vertical
slice which the point lies in is equivalent to determining the
version of the persistent interval tree which we must query.

16 / 16


	Definition
	Example
	Suboptimal Solutions
	Naive Approach
	Offline Approach

	Fat Nodes
	Path Copying
	Optimal Approach
	Algorithm
	Time Analysis

	Geometric problem

